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TREATMENT OF ANGULAR DISTRIBUTION OF RADIATION IN THE THEORY OF THE PROPAGATION OF

WEAK THERMAL WAVES

V. A, Prokof'ev

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 8, No. 5, pp. 68-179, 1967

This paper establishes criteria for the existence in an infinite me-
dium of weak plane forced waves induced by radiation.

On the basis of the equations of radiation gasdynamics, with an ar-
bitrary (two-parameter) equation of state for the gas, the parameters
of wave propagation (attenuation coefficients and a velocity disper-
sion parameter) have been calculated and analyzed over the entire
range of dimensionless numbers characterizing the motion {atio of
specific heats, Boltzmann number, Bouguer number). Thermal self-
radiation, absorption of radiation by the gas, and distribution of radia-

tion intensity with direction have been considered. The radiation char-

acteristics assumed were values averaged over frequency. Waves in-
duced by radiation are compared with pressure waves. It is shown that

there is a difference between the results obtained and those of an analy-

isis with radiation intensity averaged over direction.

NOTATION

Here yistheratio of specificheats; cg is the adiabatic speed of sound;
o is the given cyclic frequency of the forced oscillations; ¢! s the
emittance of the gas; Z™!is the Boltzmann number, referred to the
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speed of sound; (2m)~! is the Bouguer number (optical length of the
acoustic wave); w is the volumetric radiation absorption coeffi-
cient; (2m)!is the optical length of the wave; 2oty is the wave ab-
sorption coefficient at the wavelength of an acoustic wave of the same
frequency; o is the wave absorption coefficient on the mean free path
of the radiation; 2oy is the absorption coefficient on a wavelength
(true absorption coefficient); 1 is the velocity dispersion parameter
(ratio of the wave phase velocity to the speed of sound).
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The propagation of plane forced harmonic perturbations of in-
finitely small amplitude in an ideal, compressible, resting, infinite
fluid is described by the following characteristic equation [1], allow-
ing for influx of heat as a result of thermal radiation:
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q=gq,+ig,=mv,
7= 165'T3/pcvco,

m:mr—[—imi:aco/s,

v =0/ com, Le=v/Z. (0.1)

Here p and T are, respectively, the density and temperature of the
undisturbed gas, cy is the specific heat at constant volume, and ¢” is
the Stefan-Boltzmann constant. The quantity sought is the complex ex-
ponent a of the function exp (ax +iot) to which all the gasdynamic
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parametels are proportional, or (which is the same thing) all the di-
mensionless quantities m or q.

In the derivation we have used a radiative transport equation
averaged over the optical frequencies, with accurate allowance for
the angular distribution of intensity. On the left side of (0.1) we take
one branch of the logarithmic function with argument in the range
(0 to 7). Equation (0.1) is an even function of m, the signs of the
real and imaginary parts of each root being identical: the symmetric
plane attenuating waves move out in both directions from the coor-
dinate origin.
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For any values of Z, v, and y there exists a pair of roots (tm(l))
of the characteristic equation, describing the propagation of the pres-
sure waves (see [1]).

Under certain conditions there is also a second pair of roots (*m).
These roots correspond to thermal radiative waves excited in the me-
dium by radiative heat exchange. There are no other cases. We shall
examine below the positive real and imaginary parts of the roots,
which does not restrict the generality of the conclusions.

The existence of radiation-induced waves which have no analogs
in the hydrodynamics of a nonabsorbing gas has been established ear-
lier [2~6]. All the wave parameters are easily expressed in terms of
the real part my and the imaginary part mj of the roots

Oy =M, O =g =mp, xy=m, g,

T

— JE——— 1 gc .
m=mp, r=m", ol=qclm . {0.2)
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1 : - .
Here ¢, are the wave attenuation coefficients per unit length,

§1. CONDITIONS FOR THE EXISTENCE OF WAVES INDUCED BY RA-
DIATION

It follows from (0.1) that for each value of y and Z, the real and
imaginary parts of the second root are monotonically decreasing func-
tions of v. As v tends toward some value v*, the imaginary part of the
root tends to zero (the wave velocity then tends to infinity). The real
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part of the root differs from zero in the entire region v < v*. For all
values v = v* there is no second root. The limiting values of the pa-
rameters (denoted by asterisks) are determined by Eq. (0.1), if m;
tends to zero there:
a¥=ctha*  m(y0* + a *?) =275 0. *(v** { o ). (1.1)

The root ot = 1.199678 of the first equation [7] also corresponds
to the vanishing of the radiative flux. The second equation imposes
restrictions on &, (or Z), v, and y. Hence, foreachvalueof yandZ, a
unique positive value of v* or &f (Figs. 1 and 2) is determined,

In the case of a piezowopic medium (y = 1), not only a%, but also
¢ will be universal constants. From {1.1) we have

v*=1,nZ [ o * = 1.309348 Z,
i+ =t = 0.7637383,

Gy* == Yom [ o % == 1.300348,
ae* = 0.916240Z71. (1.2)

For any values of y and Z, the number ¢; lies in the interval
2y 7 CLE S (2oL (1.3)
For Z «1 (s = YpnZo*2 = 1.0914172),
gt =T L — (T~ DR (T — D@ — DY el
=t A (T — )T (P — DRy =Dy ] (14)

For Z > 1, the dependence of the parameters on y vanishes ,

g% = 5[4+ (7 — 1) 771572 o (Y — 1) (2 — B) 7 o],
vt e s [l — (1= DY (1 — 1) 2 — DY o] (1.6)

If y is close to unity (y — 1= 8 < 1) we have

et = = [ o e 8
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As Z increases, the quantity v® and its derivative increase mono-
tonically from the values in (1.4), which are proportional to Z and in~
versely proportional to y, to the values in (1.5), which are inversely
proportional to Z, and asymptotically approach the values for a piezo-
wopic medium. For any value of Z, v* is the smaller, the larger the
value of y. The value of £} increases monotonically with increase of
Z from w (2ya,*) ! to its value 17(20(1.")'1 for a piezotropic medium,
The curve £*Z) has a single point of inflection. For any value of Z,
the value of ¢4 is the larger, the smaller y.

Figure 1 also gives the function Z*(v) or Z%(1). For given values of
y and [, thermal waves are formed only for Z > Z*. For each given
optical length Iy of an acoustic wave, there is a limiting value of Z
below which thermal waves are not excited: beyond the acoustic wave
limit, the amount of radiation energy released is insufficient to induce
new waves. For given values of y and Z, further waves are excited only
at frequencies corresponding to acoustic waves with optical lengths not
less than [ * = omvL

with increase of v from zero to v¥, the radiative flux increases from
0 to a maximum, and then falls to 0 as v => v*, The limit value of the
absorption coefficient a1y per unit length of acoustic adiabatic wave
decreases monotonically with increasing Z (Fig. 1); its value is the
greater, the greater the value of y for the same value of Z. For large
Z it coincides with its value in a piezotropic medium, The absorption
coefficient per radiation mean free path is equal in the limit to the
constant value a%, for all values of y and Z, The velocity and length
of the wave become infinite in the limit, and harmonic perturbations
of the radiation field in the coordinate plane generate exponentially
attenuating (in space) oscillations of the entire medium as a whole,
Traveling waves are not formed.

Thermal radiation waves exist for {3 > ﬁ. This condition, because
of Eq. (1.10) in [1], may be rewritten as

. £o¥ 1 W*z . aT*u
BRI S E i . M (1.8)
€, g, o * (0¥ a ¥

Waves can arise only under conditions in the medium and at fre-
quencies of the forced oscillations such that when the ratio of the radi-
ation energy emitted per unit mass of gas during an oscillation period
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to the mass density of the internal thermal energy of the gas becomes
no less than some limit quantity on the order of unity.

The behavior of the wave parameters in the neighborbood of the

limit point o, = cc’;., n = 0 is determined by the relations

o =0 * 4 Ai (v — %), M= 4z (v —v%),
Ay = TR (o — AP (0 )
+ 2090 (2717 — P (* + 18]}
R= 102, (2, % — 1) [(0%2 -+ 5o #) 37—
— 20 ()] A (R e e,
= @21y
Ay = yro*ay (YL R (0. — 017,

©F = UF - 2 (1 — 1) a_*20%2, gk = (vpr L o _*?)2, (1.9
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The quantities A; and A, are negative, decrease monotonically in
absolute magnitude with increasing Z (and v), and increase with in-
crease of y (1 =y =2) i.e.,

Ay — 042615727, Ay — 0315701270 (Z<€ 1),
Ay — 042615 [7 +— 4 (12— 1)] (YZ) ™,

Ay — 031570 [v - 4 (7> — )] (12) 71 Z>1) (1.10)

§2. PIEZOTROPIC MEDIUM

The laws of wave propagation in a gas, even for y =1, beginning
at some values of ¢, coincide in first approximation with the laws
for a piezotropic medium, if Z is large enough, and they are given by
similar laws, if Z is small. Equation (0.1) for y = 1 decomposes into
the two parts

mr41=0, YetInll+q/U—gl=1+&. (21

The first equation describes motion at the speed of sound for non-
attenuating pressure waves. The second equation givesthe laws of mo-
tion for thermal radiation waves. It is equivalent to the system

M:d‘—;'—glnn 'V=71+§1%’

1 4o+
pET Ty

(1 aro tg'[gn(l_arz__nz)—ll' 4?42 <t
o= { (2.2)
Yy {m —arctg 2q (@2 + 42— 1)}, ol +0>.

The desired root depends only on £y, For oL-,-2 +n?= 1 we obtain
o = 0.89666540, n=0.44270888, £ = 0.38218189. It is clear from
(2.2) that oy =1 (the equality with ar = 1= 0), the shape of the har-
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monic oscillations in the wave is not maintained, and disturbances
attenuating almost exponentially are induced. For small values of ¢y,
the solution is given by the expansions

ay = VI5L (1 + ol — asln® — asld — asla + + ),
1= V150 (1 — axlr— aole + @afa® — aalet +-+ )
o= 4 4 2181 + 26,702 + 2 (@B + aras — a3} §® -
+ 2a5 (a® — 2a100 — 2ag) Tt £ 000
P VI 4 a4 (ar® + a2) 12+ (00 + 2ma0 — as) & +
4 (@t + 3alas — 2183+ @s® - ag) Gt -0 1

L+, 2 __ 1269
AE=TFAY A=TG . T
12 699 430672 741

%= {4000" %= 21560000 ' 2-3)

In first approximation cyp and r depend only on zy. In the vicinity
of the limit value ¢,

o ==o* —0.12615 (£, — ;)
1= —0.31570 (¢, — £,*). 24)

The parameters op, Z O, O, 1z"%, n(Fig. 3) are determined
only by the quantity £;. With increase of {y, the coefficient oy in-
creases from 0 to a maximum value (equal to ~1.22 for {ymax ®
~ 1,05 and then falls to the limiting value of. The optical wave
number 7 also has a unique maximum (equal to ~0.46 for £; & 0.29).
The product Zeyy decreases monotonically from « to a limiting value.
For a fixed value of £;, the absorption coefficient oo ~ 2%, and for
fixed 7, it is the smaller, the greater v. The absorption coefficient
oy increases monotonically from 1 to «. The quantity 12"! increases
monotonically from 0 to 0 with increasing ¢, from 0 10 gf. For a
fixed value of £y, the ratio of velocities r ~ Z. At the coordinate ori-
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From Fig. 8 we can also obtain information regarding the depend-
ence of the parameters on v. The curve oa4v) goes to values that are
the lower, the larger Z; curves corresponding to various values of Z
do not intersect. The coefficient oy ~ 2742 for v <1, The two curves
of ay(v) corresponding to Zy and Z, either do not intersect, or inter-
sect at a single point. Intersection occurs if v simultaneously satisfies
the inequalities

CimacZe <P <L 2y 522 <o <lypaxZer % <<%y, (2:9)

(Here £}* is the smallest root of the equation o7(£;) =1.)

The curve o,(v) has a maximum. The ascending branch of the
curve is the higher, the smaller Z. The ascending branch of the cuve,
corresponding to the larger Z can intersect at one point with the de-
scending branch, corresponding to small Z, if inequalities (2.5) can
be satisfied simultaneously. Replacing Z; in (2.5) by Z,(Z, > Zy), we
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obtain the conditions for the intersection of the descending branch of
the curve corresponding to the smaller Z, with the ascepding branch
corresponding to the larger Z.

The curve 1(v) increases monotonically from 0 to «, and at the
coordinate origin the derivatives dr/dv = «, For small values of
v, the curve goes to values that are the greater, the greater the
value of Z. A curve corresponding to a fixed value of Z intersects once
with each curve corresponding to another value of Z; the point of in-
tersection lies increasingly to the right and higher, the larger the value
of Z carresponding to the second curve. At any point in the positive
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quadrant of the plane (r,v), two curves corresponding to different values

of Z intersect.

With increasing v, the optical wave number 7 increases the faster,

the smaller the value of Z. The quantity n ~ Z™1/2 for small v, A
maximum occurs in the curve, after which 1(v) decreases from 0 to
the limiting point. The curves for various Z each intersect once (not
counting the origin of the coordinates), the ascending branch of the
curve corresponding to the larger value of Z, intersecting with the
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decreasing branch which corresponds to the smaller Z.
Induced waves are attenuvated, whereas pressure waves are nonat-
tenuating; at all frequencies pressure waves predominate.

§8, SMALL VALUES OF Z

For Z <1, thermal radiation waves exist only for v < 1, with
{m|>1, lql =0 (1) throughout. In first approximation, Eq. (0.1)
takes the form

=14 1if, (3.1)

which differs from (2.2) in that ¢, is replaced by y¢s. Subsequent ap-

proximations can be determined by putting (m, is a root of Eq. (3.1))

m=mo(l-+£ 48 +- €+ )~ (3.2)
The second approximation mg¢&, and the third approximation
moey for {4 = 0(1) are determined by the relations (oiry = mypey, 7g=
= m;v)
Res; = D [24a g0, — B (a5 — 171,
Ime, = D[ A (0 —np?) — 2Ba_n,]»
A=1—Cl—a_2—n,

C=[(1 — g+ ) -+ dagng’l™,  B=1E; + 20,9n,C,

D=7(y—1) Zo (2’ + ) (12 + B)™ (3.3)

mof [1 4 Yy + (mo?o® — 1)7] &s = mo%es® [1 - 1ily +

F (2me® — 1) (ma®® — )] — (1 — 1) 1il (ne’er + 7). (34)
For small values of ¢y (with v< 1, Zv < 1 simultaneously)

mep = (1 + 1) BfG0™, &= — ey,

By =—— — C?,Cl“', &3 = — icacla 1 (3.5)

er =0T (1 — 23] Ze?), Zot =547 (v —1),
€a == 1209/1100Y% — 300 (Y — 1) 22 + V2 (¥ — (G — 1) v 224,
¢a = 263 + oer® (22 — 817) — Yfarer (722 — 907) —
— oo+ (27 —3) 2] - Yt (22 — T0),

i == Z7 (G (4 + aily — eala? - eala® b o)

my = Z G (1 — oy — eof® — el 4 +o0)s
o = 1 Zoig — 260%58 + 2 (608 - oo + 08) £° A+ -+ )
r=Z 0 L+ el (o 4 e) b +

(e 20000+ ) L - (3-6)

In the neighborhood of ¢; = ¢

o= (T — o /o) e,

o_*?

Ao * v i .
n:mg(i—v—,), A:m- 3.7

Thus, if Z < 1, then oy > 1forany valueof v < v* and it decreases
with increasing v; for small values of v, thecoefficient oy, isinversely pro-
portional to the square root of the frequency. Thermal radiation waves
for Z <1 are attenuated much more rapidly than pressure waves of the
same frequency. The coefficient oy > 1 also increases with an increase
or decrease in Z, and the shape of the wave becomes distorted. More
than likely, these are initial disturbances attenuating exponentially,
according to a somewhat changed Bouguer law. The waves are not
formed in reality. The velocity of propagation is small for v < 1, and
is proportional to the square root of the frequency; with increasing v
the velocity and the wavelength increase monotonically from 0 to o,
The coefficients o ; and 7 increase from 0 to a maximum, following
which ar~>a® and n->0.

§4. LARGE VALUES OF Z

For large values of Z a solution describing thermal radiation
waves exists over a wide range of values of v.

1) For v <1, Zv < 1, expansions (3,6) ate valid. The thermal
radiation waves are attenuated much more strongly, they are propa-
gated much more slowly than the pressure waves, and they are much
shorter than the latter. With increasing v, the coefficients oy and oyg
decrease, and the quantities r and o1 increase., The coefficients
oy and ooy are the greater, the greater the value of y and the smaller
the value of Z, The velocity and the wavelength are the larger, the
smaller the value of y and the larger the value of Z. The coefficient
oy decreases with increasing y and Z.
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2) For v = 1, Zv = 0(1) the desired root of the characteristic equa-
tion is given by expansions (4.2) of reference {1] where

Uy’ 172}
M= 7?_2; , My = ——Viz_l 1<), (4.1)

1= [Ya¥ (a5 -+ as — z0)]", ua = [ (25 — a2 - 20)] 2,

as=[1 + ay + 212 — 2 (@sz; — as)]l/”., (4.2)

and the quantities ay, d, and ag are given in [1]. In first approxima-
tion
tp=u/ V2n, a.=u Vi, o=uw/u.,

r= Vo /us n=u V%L . (4.3)
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These expressions also yield formulas in first approximation when
Zv<1and v<«1, Zv>1, i.e., they are suitable in first approxima-
tion, when v <1, ¢; << 1. Both pairs of roots are of order 1 and are
given in first approximation by the values of Zv and y. The coeffi-
cient oy decreases monotonically with increasing Zv. The coefficient
o is a small quantity, increasing monotonically with Zv, For a fixed
value of Zv, the coefficient oy ~Z™L, The coefficient oy (Fig. 4) has
a minimum

Zlmin:_1 ’
amin={1+ VZ—1)/4+ yY7. (44)

The minimum is the smaller, the larger y (for y = 2, 574, 3/ 2
s, s, s, “/10 the values are, respectively, oomin = 0.4142136,
0.6885003, 0.7673269, 0.8128361, 0.8430390, 0.9041691, 0.9511225).
The wave velocity increases monotonically with increasing Zv, and in
this region there is a transition from subsonic to supersonic velacity.
The quantity 7 is small, increases monotonically with increase of v
(for given Z), and decreases monotonically with increase of Z (for
given v). In the region Zv = 0 (1) the curves of ayfv) (and also of
ay,)) for the same values of Z but different valuesof yintersect, and
after intersection the curve corresponding to the smaller value of y
lies higher.

The ratio m(®) of attenuation coefficients for thermal radiation
waves and pressure waves at a fixed length, and the ratio onql) of the
true attenuation coefficients in this region reach minimum values
greater than unity. For any value of Z, and for small v, the pressure
waves predominate. The ratio of velocities and wavelengths 12D in-
creases monotonically with increase of Zv, and reaches unity for
Z1= )// 2.

If we consider y = 2, then for y = 2 we have

73 <1

oy = ]/3/_2—(;‘;—_—_1'), My == Ve (yy+ 1),
a = (o + 1)/ o — 1" we==zm 2 204+ VI—a": (4.5)

n=1F0
o= V¥V oota, r="1V 2a,,
w=V2—1, dy/du=TFoo; (4.8)
z3>1
tp=¥ 1 —yo o= <1~yo')"/’
1= AT
= VIT W, ttuw
, a— Vg — 1y 4.7
w= (=) :

If'y > 2, then in place of g5 in (4.1) we must put
a5 =14+ a —|— 21 — 2{aszy + a)]’. (4.8)

At the po‘snt zg=1for 1 < y < 2, the pressure wave absorption co-

G

efficients oy’ and oc{l\) [1] have maxima, while for thermal radia-
tion waves o and the ratio of®) have minima. The parameters of both
waves at this point are

m W= | V72— VI—T— VD,
m D=1 VTI2+ VIFT+ VDI,
u® =1 — V2o + V1<t ,

m, =1 [VI@+ VIt — Vi

mi=0 V72— VI=1+ VD"
w=+ VI-1 0+ VoL,

Ya(vy—n 1t—-V2-—7’

(2 VIR VR

) — . 4.9
! (2~V2—Y+V?) 5

At the same point, for y = 2,
m D=1 (V2 t)(y— Vir—2)"
m® =% [(V2+ 1)~ V1r=2)",
P =o=yY2—1

my =Ya[(V2~1) (v + VT{r— 20"

my = [(V2+1)(+ V1 —2n"

=3 VHVT+ V=221,
P =1 V2V = Vr—2<t,

The coefficients o of both kinds of waves in this region, for any y,
fall between 0 and 1, and for z; = 1 the coefficients of the different
kinds of waves draw together with increasing y, and for y = 2 they
merge, as do the coefficients oy, With further increase of y for z; =1,
an angle point is formed if the pressure waves are understood to be
those waves which are continuously converting to sound waves at the
edges of the region (Z, v).

3) In the case £y <1, Zv > 1 for any values of Z and v, we have

A =1 (4.10)

do ="zt V 2z [A — 1+ 2+ O(K)],

n=VI9Ll+h+ft+om,
on==1=2f, 4 202 + O (k),
r=Vil—fh—f+124 0%,
fr== (Y — 1 — %1% 2rz))71,
Ja=lr—1),
(7 — 3y 4 6762 — M s8] (8707,
b= (n L m=3; n,m=0,1,2,3). (4.11)

In this region oy, ¢, oy and r are the larger, the smaller y.

The thermal radiation waves in this range of Z and v are attenuated
weakly over the length of an acoustic wave and over the radiation free
path, with oy ~ vo172, oar ™ vi72, ozal ~ v!’2, The correction to the
first approximation of the absorption coefficient is negative for v <
<V R[5y — DAY, and positive for v> FP(if y = 2, s, 3y,
Wy, *s, °15, 1y, then, correspondingly, ¥* = 0.91287, 0.81650,
0.69007, 0.74536, 0.64550, 0,52705, 0.038925). The coefficient oy
reachesthe value 1 for v = v %, after which it continues to increase mono-
tonically along with v, Since o isclose tounity, the shape of the wave is
distorted. In thisregion the quantity 8 > 1 [1]for any value of v, for which
reason we have, in first approximation,

m @ = r—’_ﬁa‘ K, o®Y :%g ZK',

POV Y “.12)

For v<1, Zv>1, and for v > 1, {; <1, we obtain, respectively,

. (?I_Z_'> L Y;ZJ:“T , (4.13)
y_ Vet @1 _ __M._
e o s B Al o V1 14

The ratio m®Y (v) for fixed Z increases from the value in (4.13)
to a maximum, and then decreases monotonically to the values in
(4.14). The maximum value of v is determined by the root of the equa-

tion ()% = 0.791068980)

max
5(1+ ) arctg (Vo) = Vv (5 + 3¢ . (4.15)
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The values of v and m® at the maximum point are as follows:

Y= 1.1 1.2 4/3
Pmax = 0.75425467 0.72214387  0.685085
ml | VZ = 5.4804202 2.8050695 1.7279622
T= 1.5 5/3 2
= 0.64500514  0.61275939  0.55937024

Umg
m® 1 VZ

max

1.1863999 0.91354880 0.63743485

For v << 1 the ratio m(®*9 > 1, In the region of moderately large v,
and also in the region where v > 1, if

230> 62)7 [y or — eI, (4.16)

the ratio m(®9 < 1 and the induced radiation waves predominate;
they are attenuated more slowly, and are propagated with greater ve-
locity.

Formula (4.12) for r(® is valid for any v in the range considered.
The velocity and length of the waves induced by radiation are greater
than the velocity and length of the acoustic waves and of pressure
waves of the same frequency. The velocity of the waves is proportional,
and their length inversely proportional, to o'/2, The ratio of velocities
increases with increasing v and y, and decreases with increasing Z.
The ratios are tf(®) and r > 1.

The ratio of®Y) & z > 1 throughout the entire range of v. Depend-
ing on v, it varies [1] as the function K'(v), and has a maximum

Vmax = 1.514994/ V7, ol =0.450756 VYZ/(1— 1) @.17)

4) In the region v = 0(z) the root of the characteristic equation is
a small quantity. In first approximation Eq. (2.2) is valid, and the
waves propagate according to the laws for a piezotropic medium, If
the solution for a piezotropic medium is assumed as a first approxima-
tion, then the second and third approximations for any value of y are
determined by the expressions

(y—N 4 [4D — BC 4 i (AC + BD)]
&= % — Dg '
(1= Dymeils (2181 — mo®) E — v%1® [mefvt 4 i1 E?]
= E (mo™® — iG1E) ’

; [— L 2 ___ 2 4 2, 2 4
A=m g’ —myg® — v (gt — Bm, Py - myg),

B =2m_gm; [1 — 20® (m 2 — M2
C = (m,g> —my?) v® — 2§1mr0min, E=1—mg?,

D= 200m gy - £y0% (g? — i) — o (4.18)

It is seen from (1.5) that for large values of Z in the vicinity of ¢4
the value of ey is small, 'while the value of 1 is large. The waves
are attenuated weakly on the acoustic wavelength, and are propagated
at very great supersonic velocity, With increasing ¢,, the value of ay
decreases, and o4 and r increase. In this region the curves of oy(v)
(and also cty&)) for various y again intersect, and after intersection,
the curve for the larger y will go higher, But the difference between
ay(v) for various values of y is only a small quantity of order v=1, The
coefficient et in the region ¢y = 0(1) reaches a maximum, after
which it decreases monotonically to o for Ly—>L%

The ratios m(zl) < 1, and @D 1 for £y~ The ratio m(®D pe-
comes less than 1 either for §; << 1 if (4.16) is satisfied, or for £y =
= 0(1) in the opposite case; starting from a certain ¢; (for moderate or
large v) the waves induced by radiation become predominant, and,
with increasing v, this predominance increases (m(z‘) decreases and
@) increases).

The ratio of2), with increasing v in the region of moderate values
of £, reaches a second minimum, much greater than unity, after
which it increases without limit for £;—>¢ .

1.4
0.66857531
1.4576401

3
0.45672388
0.35271881

§5. PROPERTIES OF WAVES INDUCED BY RADIA TION

This section presents results from the solution of the characteristic
equation for the entire range of values of y, v, and Z.

Absorption Coefficient on the Acoustic Wavelength (Fig. 5). With
variation of £, from 0 to ¢,*, for fixed y and Z, the absolute values of
m, and mj decrease from « to my* and 0. At small Z the curves of
ag(q) and oye(v) for the same Z but different y intersect once each in
the region ¢ = 0(1); the curve corresponding to the lower y goes higher
after intersection, The smaller the value of y, the farther the curve
goes to the right, and the lower the limiting value of ofp. With in-
creasing Z, a second intersection occurs, For Z > 1 it occurs in the
region Zv = 0(1). Up to the first intersection point, and after the second
point, o is larger for larger y and between the two, oy is larger for
smaller y and the same Z and v. With increasing £; and Z, the de-
pendence of the parameters on y is smoothed. The larger the value of
Z, the greater the range of ¢, or v in which the parameters coincide
with their values at y = 1. For each y the curves of c;(¢y) are lower
and go farther to the right, the larger the value of Z. The curves of
o(v) have the same dependence on Z and y, and their dependence on
v is analogous to that on &y. The solid lines in Fig, 5 show the depend-
ence of oy(4y) for y = 5/;. the dashed lines show the position for y =
= 1 and the dot-dash lines give the limiting values of oo

The velocity and wavelength with variation of ¢4 from 0 to £4* (or
of v from 0 to v®) increase monotonically from 0 to «(Fig. 6 for y =
=%/3), For sufficiently small ¢; (or v) the waves are subsonic, and their
wavelength is shorter than that of acoustic waves, while beginning at
certain values of £, (or of v), depending on y and Z, they become
supersonic and longer than the acoustic waves, The curves of r(¢;)and
r(v) emerge from the coordinate origin with vertical tangents, The
curve z{{, ynear the origin is the higher, the larger the value of Z and
the smaller the value of y, while close to £} the curve is higher, and
it (asymptotically) approaches infinity earlier, the smaller the value of
Z and the greater the value of y. Curves for the same y, but different
Z, or for the same Z, but different y, intersect each other once (with
the exception of the coordinate origin). )

Optical Wave Number. The curves of n(¢;)emerge from the coor-
dinate origin with a slope independent of Z and proportional to (y)l/z,
they reach a2 maximum, and then monotonically approach the x-axis,
as &; = £," thelargerthe value of Z, and the smaller the value of
y, the closer the descending branch approaches from the left to the
curve for a piezotropic gas.

The absorption coefficient ot on the radiation free path, with in-
creasing £ from 0 to ¢* (of v from 0 to v*), first increasesfromOtoa
maximum, in the region of moderate values of £;, whose maximum
depends on Z and y (Fig. 7), and then decreases to o, for any values
of y and Z. All the curves o (£y), ap(v) are tangent to the y-axis
at the origin of the coordinates. The curves er;.(4;) near the origin do
not depend explicitly on Z and progress the more steeply, the larger
the value of y. The curve o (V) progresses the more steeply, the
smaller the value of Z, Near £{* both curves decrease more rapidly for
larger y; the curve o (4y) decreases more rapidly for larger Z, and the
curve o .(v) decreases more rapidly for smaller Z. The maxima of the
curves are located farther to the right, the larger the value of Z and
the smaller the value of y. Figure 7 shows the curves of a(¢y) for
y= %/; and various Z. The dot-dash line (below the line Z = 10) cor-
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responds to y = 1 and does not depend on Z. The line for Z <1, y =
= 5/3 breaks away when ¢4 = 0.78561, for Z = 2.5, y = 5/3 when £, =
= 1.2412 for y = 1 at. §, = 1.3093.

The true absorption coefficient oy for small v, when {; and Zv are
simultaneously small, is close to 1, and is determined by (3.6). In the
vicinity of v = 0, the quantity ay> 1, if Z =Z, and o3 < 1, if Z >
> Zo(Zo= 8,08332, 6.23538, 5.36656, 5,14393, 4.92950, 4.8,
4.74342, 4.64758, for y = 1.1, 1.2, /5, 14, 1.5, 1.6, */4, 2, respec-
tively). If Z =Z,, then oy increases monotonically from™1 to = with
increasing &4 (or v) from 0 to §{* (or v*) (Fig. 8fory = 5/. The curves
rise the more steeply, the smaller the value of Z. For Z = Zy, the
curve ;) atthepoint oy = 1, £ = 0, exhibits tangency of second order
withtheline oy = 1. If Z < Zp, Z < (5.4)/?y, thenthe larger the value of
¥, the steeper the rise of the curves; if Z > Z;> (5.4)1/2)/, then the

larger the value of y, the smaller the angle at which the curves emerge.

For Z > Zy and any y, with increasing ¢, (or v) from 0 to ¢ (or v¥),
the coefficient oy decreases from 1 to a minimum, and then increases
without bound. The minimum value of o for Z very close to Zg, and
for Z > 1 is determined, respectively, by the formulas

Cimin=V 1/ s,

M min =t V=" /3, (6.1)
Umin=13/Z,
%=+ V2= + V). (5.2)

With increase of Z from Zg to =, the value of atymin decreases
from 1 to the value of (5.3); {ymin ilicreases from 0 to a maximum
value, and then decreases monotonically, The minimum o is the
lower, the greater the value of y. The curve departs downward more
steeply from the point §;= 05, o= 1, the larger the value of Z and the
smaller the value of y (if y > 2, Z > (54)//%y. then the curve is the
steeper, the larger the value of y). For Z > Zgand 0 =v=vy,, the
coefficient oy = 1. If Z is close to Zg, then vyy= (—c1/c3)l/2 Z.

With increasing Z, the value of vy, increases from 0 to [5 (y — 1)/
/3 y)]'l/ 2, The quantity y is never a small quantity; the wave shape
is not maintained.

Comparison with Pressure Waves. Absorption. As long as the value
of Z is small, the ratio m®) >>1 decreases with increasing ¢y or v
(Figs. 9, 10fory = 5. 3). The pressure waves predominate, With in-
creasing Z, the general form of the function m() changes, becoming
close to that described in $4 for Z > 1, with one minimum, greater
than unity, and a maximum. For a certain Z equality m® = 1 s at-
tained. For a given y this is attained (with increasing Z) first for a
certain value of Z*¥, equalto the limiting value of Z*, and occurs only at
the point &, = &,™ = £, (or v = v™ = v%, With further increase in
7> 7% = 2 (3)Y2y/(y — 1) the inequality m®Y < 1 is satisfied for
an increasingly larger segment of v (or of £;), with its right-hand end
at the point v—>v*(Z;— {M. For Z > Z** the induced wave predomi-
nates in the range v®* = v < v*, the predominance being greater for
larger y, Z, and v. Figure 10 shows the ratio of the absorption coef-
ficient for thermal radiation waves and pressure waves for y = A
(solid lines), y = 7/5 (dot-dash lines), for the values of Z shows on the
curves; the limiting values of the ratio are shown by the dashed lines,

Comparison With Pressure Waves, Velocity, The ratio r(?D in-
creases monotonically from 0 to « with increasing v (or ¢g) (Fig. 11

for y = 5/3). For small v, the pressure waves predominate also as re-
gards velocity of propagation., For values of the parameters satisfying
the inequality m ™) < 1, the inequality (®) > 1 also holds true.

Comparison With Average Theories, Induced waves were examined
in [8] with averaging over the directions of the equation of reaction
transfer. The characteristic equation took the form (the averaging co-
efficients were included in qO and ;10) :

o= i .9

From accurate calculation of the distribution of radiation with di-
rection, it follows that waves will exist only in a limited range of
values of u(y, Z) since averaging over direction leads to the existence
of waves for any values of y, Z and v, In averaged theory the result
is that with variation of {; from 0 to «, the coefficient o increases
monotonically from 0 to g™1(g is the averaging coefficient). It fol~
lows from exact theory that o increases from 0 to o* with increase
of ¢y from 0 to &4*, and reaches a maximum in this region. It has
been shown in averaged theory that oy < 1for Z < Zy, 1 =y < 2 and
£1> 0. It follows from exact theory that for y close to 1 and Z < Zy,
the coefficient o is less than 1 (by a small quantity) in some range
of low values of v. For small §; the left side of (5.1) and (5.4) for g =
= 1/(3)1/ % Qiffer by the small terms o(lahy, and both theories give iden-
tical results; the divergence increases with increase of £;. However,
in many respects, the two theories give a convergent general picture
of motion, even in the general case.
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